If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=96t-16t^2
We move all terms to the left:
20-(96t-16t^2)=0
We get rid of parentheses
16t^2-96t+20=0
a = 16; b = -96; c = +20;
Δ = b2-4ac
Δ = -962-4·16·20
Δ = 7936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7936}=\sqrt{256*31}=\sqrt{256}*\sqrt{31}=16\sqrt{31}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{31}}{2*16}=\frac{96-16\sqrt{31}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{31}}{2*16}=\frac{96+16\sqrt{31}}{32} $
| n6−7n12=16 | | 6(x+3)-7=2x+4(2+x) | | 1/2x+1/4=3x+8 | | 10-8n=6n+16 | | 7^2-21z-28=0 | | ×+y-2=×-y | | 6x-6=4x+5 | | 3(x+1)^2-4=5 | | 1—6d+2—3=1—4(d−2) | | -1/2/x=-7/3 | | -292-7x=15x+126 | | -7(x+9)-42=3-66 | | -14y+20=-7y-36 | | 6r-140=-15 | | 15x+12=5x+28 | | 25-2r=12 | | 14y+20=-7y–36 | | b/17-5b/17=24/17 | | 5x+31x-5=9(4x+7 | | 1/2(4x-6)-2/3(6x+6)=6 | | 6(3n-5)=(9n+8)+1 | | 6×+10y=6 | | 31-4c=15 | | -113=19a | | 14y+20=-7y–20–16 | | -4(r+9)=-70 | | 4/x=12/96 | | x/13-25/26-5=0 | | 9^x-1-2x3^x-27=0 | | 12/9=m | | 113=-19a | | 4(2y-5=32 |